When you hear that cancer has spread to the lymph nodes, it doesn't matter whether the patient is a dog or a human, you know it can't be good. Involvement of lymph nodes can be important in the spread of many cancers for both species. Being able to predict which lymph nodes are most likely to be affected by cancer can make a big difference in catching cancer early and directing appropriate treatment.

With funding from CCAH, veterinary cancer surgeon Michele Steffey has been working to determine the best protocols and techniques for sentinel lymph node mapping—widely used in human cancers—in her canine patients to answer the critical question of which nodes may be involved in cancer's spread.

“Thanks to the CCAH, we hope this research will lead to earlier treatment decisions which supports a longer, better quality of life for affected dogs.”

– Dr. Michele Steffey

“Thanks to the CCAH, we hope this research will lead to earlier treatment decisions which supports a longer, better quality of life for affected dogs.”

– Dr. Michele Steffey

Continued on page 3
A Message from the Director

Being part of the University of California, and UC Davis in particular, means that the Center for Companion Animal Health has access to the brightest minds to address the problems facing animal health and welfare. As part of the veterinary school, we are at the forefront of discovery and transfer of that discovery to patient care. Many of our researchers are aligned with, or working directly at, the veterinary hospital, which means we know the most pressing issues that need tackling. We also tap into the best from across the campus—from physicians, biomedical engineers, nutritionists, behaviorists, scientists and so many more—to identify, work on, and solve problems. With the whole university behind us, our integrated teams are able to assemble a vast array of knowledge and skills to help solve the health issues facing our companion animals, and sometimes their two-legged friends as well.

Whether it is a bright young resident working on their first research project, or a faculty member who has been here for decades, your gifts make sure that we have the resources necessary to make an impact. As you will see in this issue, we are able to support individual researchers and also invest in new infrastructure and equipment, such as bringing PET imaging to our future All Species Imaging Center and using 3D printing to improve radiation therapy. Together, we will keep moving forward.

Thank you,
Michael S. Kent, MAS, DVM, DACVIM, DACVR
Director, Center for Companion Animal Health

Streamlining Patient Care

Advancements in medical technology are rapidly driving a new age of diagnostic imaging. The veterinary hospital is leading the way in this capacity, and the team envisions an All Species Imaging Center (ASIC) as a hub of the new Veterinary Medical Center. Centrally located in the new facility, ASIC will bring together radiology, ultrasound, nuclear scintigraphy, magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) under one roof to better serve patients and clients.

These imaging techniques are critical not just for diagnostics, but to guide the precision therapy clinicians provide to patients. Additionally, imaging is becoming more important in assessing how patients are responding to new treatments. This is crucial to the research that the Center for Companion Animal Health (CCAH) supports and why the CCAH, through its donor support, is helping fund advances in new types of imaging.

Many of the studies we fund are clinical studies,” said Dr. Michael Kent, CCAH director. “Finding better, less invasive ways of tracking disease and seeing how patients respond to new treatments is vital to improved animal health.”

Imaging requires cutting-edge equipment and specialized space. Therefore, having a designated area to house this equipment together will streamline patient care. The ASIC will reduce wait and anesthesia times (thus reducing stress on the animal), allow different imaging tests to be conducted at the same time and, above all, promote integrated care and research of the highest quality.

The future of imaging at UC Davis will embrace PET scan technology to diagnose injuries that may not be visible with other imaging modalities. To see more of how the CCAH is promoting new technologies to bring PET imaging methods to “see” the lymph nodes of the pelvis, and subsequently to identify the sentinel lymph nodes. A third study evaluating sentinel lymph node mapping in dogs with mast cell tumors is being written up and introduces an exciting new technology with real promise for use in veterinary patients. A fourth study in dogs with oral tumors is ongoing and enrolling patients.

While human lymph node mapping techniques provide some translational knowledge, the specific application isn’t exactly the same. Steffey notes the anatomy of lymph nodes and the lymphatic system is different in dogs; it’s a species-specific question to answer. More importantly, the gold standard method of lymph node mapping in humans uses a radioactive tracer that is expensive and comes with a lot of logistical and regulatory issues making it unlikely to be widely available in veterinary medicine.

“We needed to find ways to apply available technologies to develop accurate and reliable lymph node mapping for veterinarians treating dogs with various cancers,” Steffey said. “Thanks to the CCAH, we hope this research will lead to earlier treatment decisions which supports a longer, better quality of life for affected dogs.”

Cancer’s Spread

Continued from page 1

Cancer’s Spread

Continued from page 1

accurately where a particular cancer is going to spread first in the lymphatic system if it is going to metastasize. Our goal is to catch cancer early, and to do it as minimally-invasively as possible, which translates to better outcomes for our animal patients.”

Steffey is getting close to her goal of developing the best way to map lymph nodes potentially involved with canine cancer, thanks to support from CCAH donors. As a result, sentinel lymph node mapping techniques, that identify the first lymph node the cancer is likely to spread to, are now available to a wide variety of cancer patients at the UC Davis veterinary hospital.

She and fellow researchers recently published studies in the journals Veterinary and Comparative Oncology and Veterinary Radiology & Ultrasound that used ultrasound and computed tomography (CT) in dogs with anal sac gland adenocarcinoma to evaluate the ability of different imaging methods to “see” the lymph nodes of the pelvis, and why the CCAH, through its donor support, is helping fund advances in new types of imaging.

The ASIC will also expand our MRI capability and enable space for a second MRI unit to expand clinical operations and enhance research discoveries. Our clinical and research MRI caseload has steadily increased over the past 15 years, nearly tripling since 2002.

The All Species Imaging Center will centrally house ultrasound, MRI, CT, PET and all other imaging modalities at the hospital.
Cats may or may not have nine lives, but they do have healthier lives thanks to the research funded by generous donors to the CCAH. For the past several years, the center has supported three different feline-focused projects with Dr. Brian Murphy, that have yielded scientific discoveries to improve the well-being of cats—and in some cases, people. These projects include: feline immunodeficiency virus (FIV), feline infectious peritonitis (FIP) and a gene therapy project exploring ways to correct anemia associated with renal disease in cats.

Murphy, an anatomic pathologist, said the CCAH funding of FIV research has yielded particularly valuable knowledge about a complex retrovirus that causes immunodeficiency disease in domestic cats. FIV-infected cats are found worldwide, but the prevalence of infection varies greatly. In the United States, approximately 1.5 to 3 percent of healthy cats are infected with FIV, while rates are significantly higher (15 percent or more) in cats that are sick or at high risk of infection.

Similar to human HIV infection, FIV attacks the immune system, leaving cats vulnerable to other infections. Although infected cats may appear asymptomatic for years, they eventually develop late-stage disease that makes the cat susceptible to various secondary infections and tumors.

“FIV is tricky and clever, which makes it really interesting to study,” Murphy said. “It can hide in tissues or go into a latent form, making the virus itself difficult to detect in a blood test. We’re interested in learning where it’s hiding, how it remains hidden and what methods can be used to bring it out of hiding to be destroyed.”

One of his most recent publications in *Frontiers* revealed that particular lymph node tissue serve as sites for hiding FIV during the late stages of asymptomatic infection.

“This suggests that strategies to eradicate the disease in cats, for which there is currently no cure, will need to address these tissue viral reservoirs,” Murphy said.

Murphy noted the primary goals of his research are twofold: to improve the lives of cats and also the lives of people with HIV.

“The reason these types of studies are of value are that they provide a really good model for what people with chronic HIV are dealing with, what the molecular pathogenesis of the virus is, and what can be done medically to reactivate and eliminate the latent virus,” Murphy said.

In the past couple of years, Murphy also had the opportunity to mentor two graduate students, Christos Eckstrand and Samantha McDonnell Evans, who both worked on the FIV project and helped uncover key molecular features of long-term chronic infection with FIV. Eckstrand is now a veterinary anatomic pathologist and assistant professor at Washington State University College of Veterinary Medicine. Evans completed her Ph.D. with Murphy through the UC Davis Veterinary Scientist Training Program that allows a DVM student to simultaneously obtain a doctorate, and is now a resident at Colorado State University in veterinary clinical pathology.

“I’ve been extremely fortunate to have the support of CCAH to continue this research,” Murphy said. “In the long run, I hope the discoveries we’ve been able to make benefit the health of cats, as well as people suffering from these immunodeficiency diseases.”
Improves and Personalizes Radiation Therapy

In radiation therapy, the goal is always to maximize the dose on the tumor and minimize radiation going to normal tissues. One way to do this is to use bolus material for tumors that are near the surface of the body and skin. Boluses act as an artificial tissue that absorb radiation doses. A bolus can be made of many types of materials—water-soaked gauze, a modeling compound like Play-Doh, or prefabricated sheets of artificial “skin.” None of these are ideal like Play-Doh, or prefabricated sheets of water-soaked gauze, a modeling compound can be made of many types of materials—tissue that absorb radiation doses. A bolus can be "drawn" on the surface. This can then be imported into other software which allows for the creation of a three-dimensional (3D) structure which can be printed using a rubbery material that exactly conforms to the patient and is placed on them before each treatment. Each bolus takes between six and 12 hours to print, depending on the thickness and size.

The 3D printer allows oncologists to make a bolus that is the exact shape as the contour of the patient,” said Dr. Michael Kent, radiation oncologist and director of the Center for Companion Animal Health. “This eliminates air gaps and helps change how the dose distributes to the tissue.”

To see a timelapse version of the printer in action, please see the “UC Davis 3D Printer Timelapse” video on YouTube.

Bob and Lori Pryt brought their dog Enzo to the veterinary hospital in 2012 for treatment of a jaw cancer. After several surgeries and a course of radiation therapy, Enzo remains happy and cancer free. Last year, the Pryts asked Dr. Kent about equipment needs at the center. Dr. Kent mentioned how 3D printing could improve radiation treatments.

The Pryts supported the purchase of the 3D printer and the needed computer equipment to provide the best care possible for each patient. After researching the best type of material with which to print (one that would closely replicate tissue), the radiation oncology specialists began printing custom boluses for each patient that needs one.

Because of the Pryts’ gift and support of the research to bring this technology to the veterinary hospital, boluses can be printed for just a few dollars each, allowing the service to implement this new technology without increasing costs.

"This is a great example of how practical translational research can quickly be brought to the clinic and impact our patients," said Dr. Kent.

"Enzo (after his cancer treatment), who inspired his owner’s gift to advance radiation therapy.

Lasting Tribute – Forever Friends

You may wish to honor a much-loved pet, pay tribute to a family member or friends, or recognize a special veterinarian. If you would like to create a memorial brick in Edna's Garden or a personalized etched plaque in Angel’s Courtyard at the Center for Companion Animal Health, please call 530-752-7024 or visit https://give.ucdavis.edu/Go/MemorialBrick

Anonymous
Ralph and Madal Andersen Family Fund
Challene Arora
Donald Avary
B. and R. Carter Charitable Fund
Gary and Debra Baird
Mercedes Barros
Harran Benson
Eric Berg
Robert Bobeck and Danielle Holkhaugh
Grace Blair
Brad Bohrer
Michael Borkh and Kathleen Brannan
Betsy Bowser
Thomas and Nancy Boswell Fund
Patricia Brennan
Renée Cali
Sergio and Claudia Caminha
Robert Canin
Caron Compactor Co., Inc.
Glen and Angela Charles Family Foundation
Jack and Janet Collins
Michael Collins
Victoria Cortes
Frank and Sue Dale
DeaDogz Charitable Fund
DEMARC Foundation in memory of Dorothy and Marcell Kolisko
Dennis and Susan Driver
Anthony and Carletta D’Souza
Robert Emerson and Lauren Westreich
Stephen Evans and Kathleen Correia
Zalea Famulain and Lilian Levinson Foundation
Mildred G. Federico Charitable Foundation
Allan Feinberg
Edwin Fichtner and Patricia Fichtner
Alan and Melinda Finch
Winfried Fong
John and Ann Fornoff
Allan and Roberta Ginsberg
Charlotte Golan
Golden Gate Cat Club, Inc.
LuCinda Grayum-Cook
Floyd and Sandra Greene
Colleen and Robert D. Haas Fund
Raymond and Marianne Hammerschmidt
Roy Hanson, Jr.
Heppy Trust
Carol Higgins
Suzanne Hill
Karen Hooper
Irons Family Charitable Fund
Christopher and Juliana Jaeger
Rajeev Jayawant
JBP Corporation
Donna Jones
Song Kang and Helen Kwong
Barbara Kerr
Jane Kiewit
Koren Foundation
David Krane and Laura Bronson
G.M. Lawrence Insurance Brokerage
Bill Lawver
Clark Lemaux
Paul and Lea Levine Foundation
Ryan and Holly Lindsay
Winnie Lo
Chee Louise and Christina Louise
Lucky Fund
Maddie’s Fund
Maine Coon Breeders and Fanciers Assoc.
Carol Marshall
Fritz and Beverly Maytag
Sharon Melnyk
Ana Mendez
Nancy Merlter
Patricia Mikaelian
George Sydney and Phyllis Redmond
Miller Trust
Mark Miller
Clelia Mohrlelt
Mt. Diablo Dog Training Club, Inc.
Paul and Susan Nagara
Joanne Nicholson
John Noll
Ogina Solutions, LLC.
Robert Paraste
Michael and Ann Paiker
Jerold Pearson
Thomas Pollock and Eileen Tashios
Bob and Lori Pryst
Raskin Foundation
Marc Rayasich
Martha Reese
A.J. Reynertson
James Riker and Janell Sumida-Riker
Shirley Raxson Seper
Albert and Nancy Sarnoff
Bille Sarrin
Peter Sawyer
Sathaye Family Foundation
Mark Schaffer
Cheryl Sedestrom
Randy and Christina Sesser
Paul and Debbie Smith
SOCK FTP
William Sommers and Sandra Black
Gary and Cathy Spruiling
Donald and Robin Stanisich
Miriam C. Stelling
Mariyo Sogaya
Marcia Sydul
Kyle Tetro
Sheila Thornton
Jean Tindel
Michael Tracy and Debra Lelak
Timothy Triscano
Dr. Vokac and Stacey Baba
Katharine Tyson
James Volak and Stacey Baba
Wag Hotels, Inc.
Suzanne Walchli
Mary Wallace
Weatherby for Women
Susan Wenterdow
Madaline Wellington
Lin Zucconi

We are grateful for the gifts from our many friends who advance our research endeavors to improve the health and well-being of companion animals. The following benefactors contributed $1,000 or more to the Center for Companion Animal Health.

UC DAVIS VETERINARY MEDICINE • CCAH UPDATE

July 1, 2016 to June 30, 2017
CCAH Update is published by the School of Veterinary Medicine at the University of California, Davis: Michael D. Lairmore, dean; Michael Kent, director, CCAH; Linda Ybarra, director of communications; Katie Blakewell, Celeste Borelli, Mandy Newkirk, Don Preisler, Carolyn Sawai, Kate Tweeddale, Rob Warren, Trina Wood, contributors; Steve Dana, ATS Mediaworks, Michelle Steffey.

The CCAH is dedicated to advancing studies in veterinary medicine—encompassing new ways to prevent, diagnose and treat diseases including cancers, genetic and immune disorders, infectious diseases, kidney and heart diseases, and nutritional disorders in companion animals. We welcome visitors to come and learn more about our mission and programs. To schedule a visit, please call 530-752-7295.

The University of California does not discriminate in any of its policies, procedures or practices. The university is an affirmative action/equal opportunity employer.

Help us go green! Subscribe to our online publications by visiting http://www.vetmed.ucdavis.edu/go/subscribe

Highlights of Donor Funded CCAH research studies

Here are just some of the studies we are currently funding with your support. Thank you for the impact you are making.

- Better ways to diagnose elbow dysplasia in dogs using PET scanning (Dr. Mathieu Spriet)
- Developing a toxoplasma vaccine for cats (Dr. Jeroen Saeij)
- A new drug for treating bladder infections in dogs (Dr. Jane Sykes)
- Using vinblastine chemotherapy in cats (Dr. Luke Wittenburg)
- How to use narcotic pain medications in parrots (Dr. David Guzman)

Caring Counts

Isn’t it nice to receive caring words from friends and family when they acknowledge the special relationships we have with our beloved animal friends? You can return the kindness with a gift to the Companion Animal Remembrance and Endearment (CARE) fund. Your honorees are sent a special letter from the director of the CCAH notifying them of your meaningful tribute. Gifts to the CARE Fund benefit companion animal health studies.

For more information visit: https://give.ucdavis.edu/Go/care or call 530-752-7024.